The Na⁺/e⁻ stoichiometry of the Na⁺-motive NADH : quinone oxidoreductase in *Vibrio alginolyticus*

Alexander V. Bogachev, Rachilya A. Murtazina, Vladimir P. Skulachev*

Department of Bioenergetics, A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119899, Russia

Received 31 March 1997

Abstract A method is proposed to estimate the stoichiometries of primary Na⁺-pumps in intact bacterial cells. It is based on technique when the H^+/e^- stoichiometry is measured in the presence of protophorous uncoupler and in the absence of penetrating ions other than H^+ . Under these conditions, the H^+ influx discharges membrane potential generated by the Na⁺ pump so the Na⁺/e⁻ and H^+/e^- ratios become equal. Using this approach it is shown that the Na⁺/e⁻ ratio for the Na⁺-motive NADH : quinone oxidoreductase of *Vibrio alginolyticus* is equal to 0.71 ± 0.06 . The Na⁺/e⁻ stoichiometry appears to be \approx 1, provided that the contribution of the non-coupled NADH : quinone oxidoreductase, which is resistant to low HQNO concentrations, is taken into account.

© 1997 Federation of European Biochemical Societies.

Key words: Na⁺/e⁻ stoichiometry; Na⁺-motive NADH: quinone oxidoreductase; Vibrio alginolyticus

1. Introduction

The Na+-motive NADH: quinone oxidoreductase is shown to operate in the initial span of the respiratory chain of the marine bacterium Vibrio alginolyticus. This electrogenic primary Na⁺ pump generates a transmembrane difference in Na^+ electrochemical potentials ($\Delta\mu_{Na^-}$) [1,2]. The $\Delta\mu_{Na^+}$ formed is then utilised to support osmotic work, i.e. uphill transport of solutes [3], mechanic work, i.e. rotation of flagellum [4], and chemical work, i.e. oxidative phosphorylation [5-7]. Genes encoded for this enzyme were recently cloned and sequenced. It was found that the corresponding operon consists of six genes showing no substantial homology with other NADH: quinone oxidoreductases [8,9]. It was also established that the Na⁺-NADH: quinone oxidoreductase contains FAD and a FeS cluster [9,10]. The functional mechanism of this enzyme still remains obscure. In particular, such a crucial parameter as the Na⁺/e⁻ stoichiometry is unknown. In the series of experiments described below, we established this stoichiometry to be ≈ 1 .

2. Materials and methods

2.1. Bacterial strains and growth conditions
V. alginolyticus, strain 138-2 (wild type), and a mutant strain, defi-

*Corresponding author. Fax: (7) (95) 939 03 38. E-mail: skulach@head.genebee.msu.su

Abbreviations: $\Delta\mu_{H^+}$ and $\Delta\mu_{Na^-}$, transmembrane differences in H^+ and Na^+ electrochemical potentials, respectively; $\Delta\Psi,$ transmembrane difference in electric potentials; CCCP, m-chlorocarbonyleyanide phenylhydrazone; HQNO, 2-heptyl-4-hydrooxyquinoline N-oxide; TPP+, tetraphenyl phosphonium; TTFB, 4,5,6,7-tetra-chloro-2-tri-fluoromethylbenzimidazole

cient in the Na⁺-motive NADH: quinone oxidoreductase, Nap1 [2] were the generous gifts of Professor Tsutomu Unemoto. The cells were grown to the middle exponential phase at 37°C in medium containing 0.5 M NaCl, 10 mM KCl, 15 mM (NH₄)₂SO₄, 5 mM MgSO₄, 0.05% yeast extract, 0.4% (v/v) glycerol, 0.5 mM Na₂HPO₄, 50 mM Tris-HCl pH 8.6.

2.2. The stoichiometry measurement

The cells were harvested at $7000 \times g$ (10 min). Then, internal K⁺ was replaced by Na⁺ according to the modified method of Nakamura et al. [11]. The cells were suspended in a medium containing 0.4 M NaCl, 5 mM MgSO₄ and 50 mM diethylamine pH 8.8, incubated at room temperature for 10 min and sedimented at $7000 \times g$. This procedure was repeated twice. After this, the cells were washed twice with 0.2 M Na₂SO₄, 5 mM MgSO₄ and 20 mM HEPES-NaOH pH 7.5. Finally, the cells were washed with the incubation medium (0.2 M Na₂SO₄, 5mM MgSO₄, 10 mM glycerol, 0.1 mM HEPES-NaOH pH 7.5), re-suspended in this medium (to 1.5 mg cell protein×ml⁻¹) and injected into a 1.4-ml chamber equipped with a pH electrode. After saturating the mixture with argon, the chamber was closed and the pH level was adjusted to pH 7.5 with NaOH.

To measure the H^+/e^- stoichiometry, 5 nmol O_2 was added. The pH electrode was calibrated with 10 nmol additions from the argon-saturated H_2SO_4 solution. To estimate the H^+/e^- ratio, linear extrapolation was employed according to [12].

Respiration was measured by a Clark-type oxygen electrode. Protein concentration was estimated by means of the biuret micromethod, using bovine serum albumin (Merck) as a standard.

3. Results and discussion

In 1982, Tokuda and Unemoto [1] showed that an O_2 addition to the V. alginolyticus cells in the presence of a protonophore gives rise to an alkalization of the medium. This effect was interpreted as the electrophoretic, protonophore-mediated H^+ uptake supported $\Delta\Psi$ which was generated by the Na^+ -NADH: quinone oxidoreductase. Such an effect can be used to measure the Na^+/e^- stoichiometry of this enzyme. In fact, the number of H^+ ions imported by the cell in the presence of protonophore must be equal to the number of Na^+ ions exported by the Na^+ -NADH: quinone oxidoreductase, provided that H^+ is the only ion discharging the Na^+ pumpgenerated $\Delta\Psi$. To minimize the contribution of other ion fluxes to the $\Delta\Psi$ discharge, we excluded K^+ and Cl^- from the incubation medium and replaced intercellular K^+ with Na^+ .

As one can see in Fig. 1, the O_2 pulse in the presence of penetrating cation TPP⁺ entails an H⁺ efflux from the V. alginolyticus cells which is presumably a result of operation of the H⁺-motive terminal oxidase [13]. On the other hand, the same O_2 pulse in the presence of protonophore CCCP gives rise to an opposite effect, i.e. an H⁺ influx. This could be accounted for by an electrophoretic H⁺ uptake caused by a discharge of the Na⁺-NADH: quinone oxidoreductase-generated $\Delta\Psi$. No pH change occurs when both TPP⁺ and CCCP

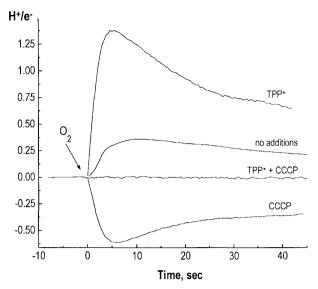


Fig. 1. The H^+/e^- stoichiometries in the *V. alginolyticus* 138-2 cells oxidizing glycerol. Additions: 5 mM TTP⁺, 15 μ M CCCP.

are added. In the absence of TPP^+ and CCCP, a very small H^+ efflux is observed.

The dependence of the H^+/e^- stoichiometry upon the CCCP concentration is shown in Fig. 2. According to these data, the maximal H^+/e^- ratio is reached at 15 μ M CCCP. This ratio provided to be equal to 0.71 ± 0.06 (mean of 8 experiments). Similar H^+/e^- stoichiometry was achieved when using TTFB as a protonophorous uncoupler (data not shown).

No pH change during O_2 pulses in the presence of CCCP is observed in a mutant strain V. alginolyticus lacking Na^+ -NADH: quinone oxidoreductase. On the other hand, the same mutant appears to be competent in the TPP^+ -stimulated H^+ efflux when CCCP is absent (Fig. 3A). Magnitude of the O_2 pulse-induced H^+ influx into wild-type cells in samples with CCCP is strongly decreased when lactate substitutes for glycerol as the oxidation substrate (Fig. 3B). The same figure shows that the H^+ influx is arrested by very low HQNO concentrations. Parallel measurement of the respira-

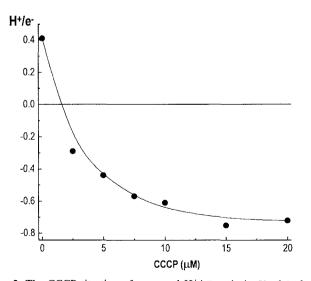
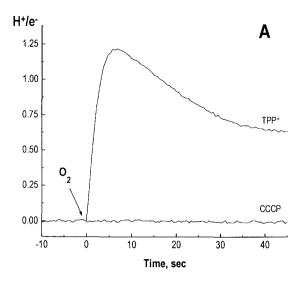



Fig. 2. The CCCP titration of measured H⁺/e⁻ ratio in *V. alginolyticus* 138-2 cells oxidizing glycerol.

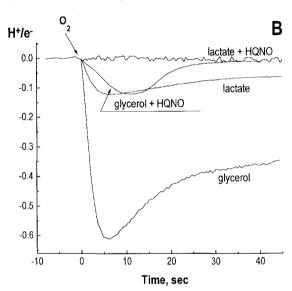


Fig. 3. (A) The $\rm H^+/e^-$ stoichiometries in $\it V.$ alginolyticus mutant strain Nap1 lacking the Na⁺-NADH: quinone oxidoreductase. Substrate, glycerol. Additions: 5 mM TPP⁺, 15 μ M CCCP. (B) The $\rm H^+/e^-$ stoichiometries in the $\it V.$ alginolyticus 138-2 cells oxidizing D,L-lactate or glycerol in the presence of 15 μ M CCCP. Effect of 5 μ M HQNO.

tion rate revealed that these HQNO concentrations lower the O_2 consumption by the V. alginolyticus cells by $\approx 70\%$ (Fig. 4). To achieve further inhibition, much higher concentrations of HQNO are required.

The above data indicate that it is the Na^+ -NADH: quinone oxidoreductase which is responsible for the CCCP-mediated H^+ influx when O_2 is added to anaerobic suspension of V. alginolyticus cells. This process: (i) is absent in the mutant strain lacking Na^+ -NADH: quinone oxidoreductase; (ii) is sensitive to low concentrations of HQNO specifically inhibiting this enzyme [1,14]; and (iii) cannot be effectively supported by oxidation of D-lactate (a substrate which is oxidized in this bacterium in the NAD+-independent fashion).

At least two facts suggest that, under the conditions employed, the bacterial membrane has a low permeability to ions other than H^+ . (1) Without TPP⁺ and CCCP, the O_2 pulse produces only a small pH change. (2) The rate of *decay* of the

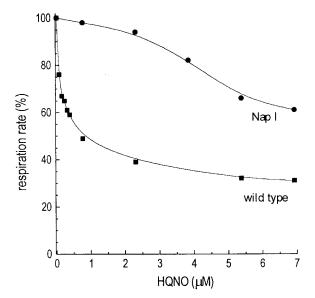


Fig. 4. The HQNO respiration inhibition in wild-type *V. alginolyticus* 138-2 cells and in the Nap1 mutant strain. Substrate, glycerol.

alkaline pH shift after the O_2 pulse in the presence of CCCP is much slower than the rate of *formation* of this pH change. Since in these experiments we used saturating CCCP concentrations, the observation in (2) indicates that penetration of ions other than H^+ are rate-limiting for the alkaline pH shift decay.

Thus, in samples with high CCCP concentrations, the membrane permeability for H+ is much higher than for other ions so amount of the Na+ ions extruded by the Na+-NADH: quinone oxidoreductase should be equal to that of the H+ ions taken up to discharge the Na+ efflux-generated $\Delta\Psi.$ In other words, experimentally measured Na+/e^ ratio is equal to the Na+/e^ ratio, i.e. 0.71. In fact, this value should be lower than the true Na+/e^ stoichiometry of the Na+NADH: quinone oxidoreductase since, besides the Na+NADH: quinone oxidoreductase sensitive to low [HQNO], some O_2 consumption is due to operation of the non-coupled NADH: quinone oxidoreductase which is much more resistant to HQNO [14]. Contribution of this enzyme and NAD+-

independent primary dehydrogenases, according to the HQNO titration of respiration of V. alginolyticus cells, is $\approx 30\%$ of the total O_2 consumption (Fig. 4). This means that the true Na^+/e^- stoichiometry of the Na^+ -NADH: quinone oxidoreductase is ≈ 1 . This value is lower than the H^+/e^- stoichiometry for the *Escherichia coli* H^+ -motive NADH: quinone oxidoreductase which we estimated in our previous work as equal to at least 1.5 [15]. Nevertheless, the measured Na^+/e^- stoichiometry is in line with Rich's schemes of the Na^+ -motive NADH: quinone oxidoreductase mechanism [9,16].

Acknowledgements: This work was supported, in part, by INTAS Grant INTAS-93-742 and, in part, by Russian Foundation of Basic Research Grant N 96-04-50938. We are grateful to Professor Tsutomu Unemoto for the *V. alginolyticus* strains.

References

- Tokuda, H., Unemoto, T., J. Biol. Chem. 257 (1982) 10007– 10014.
- [2] Tokuda, H., Unemoto, T., J. Biol. Chem. 259 (1984) 7785-7790.
- [3] Tokuda, H., Sugasawa, M., Unemoto, T., J. Biol. Chem. 257 (1982) 788–794.
- [4] Dibrov, P.A., Kostyrko, V.A., Lazarova, R.L., Skulachev, V.P., Smirnova, I.A., Biochim. Biophys. Acta 850 (1986) 449–457.
- [5] Dibrov, P.A., Lazarova, R., Škulachev, V.P., Verkhovskaya, M.L., Biochim. Biophys. Acta 850 (1986) 458–465.
- 6] Skulachev, V.P., Trends Biochem. Sci. 9 (1984) 483-485.
- [7] Skulachev, V.P. (1989) Membrane bioenergetics, Springer, Berlin, Germany.
- [8] Hayashi, M., Hirai, K., Unemoto, T., FEBS Lett. 363 (1995) 75–77.
- [9] Rich, P.R., Meinier, B., Ward, B., FEBS Lett. 375 (1995) 5-10.
- [10] Pfenninger-Li, X.D., Dimroth, P., FEBS Lett. 369 (1995) 173–
- [11] Nakamura, T., Tokuda, H., Unemoto, T., Biochim. Biophys. Acta 693 (1982) 389–396.
- [12] Wikström, M., Penttilà, T., FEBS Lett. 144 (1982) 183-189.
- [13] Smirnova, I.A., Vaghina, M.L., Kostyrko, V.A., Biochim. Biophys. Acta 1016 (1990) 385–391.
- [14] Hayashi, M., Miyoshi, T., Sato, M., Unemoto, T., Biochim. Biophys. Acta 1099 (1992) 145–151.
- [15] Bogachev, A.V., Murtasina, R.A., Skulachev, V.P., J. Bacteriol. 178 (1996) 6233–6237.
- [16] Rich, P.R., Biosci. Rep. 11 (1991) 539-568.